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The force between two parallel charged flat surfaces, with discrete surface charges, has been
calculated with Monte Carlo simulations for different values of the electrostatic coupling. For low
electrostatic couplingssmall counterion valence, small surface charge, high dielectric constant, and
high temperatured the total force is dominated by the entropic contribution and can be described by
mean field theory, independent of the character of the surface charges. For moderate electrostatic
coupling, counterion correlation effects lead to a smaller repulsion than predicted by mean field
theory. This correlation effect is strengthened by discrete surface charges and the repulsive force is
further reduced. For large electrostatic coupling the total force for smeared out surface charges is
known to be attractive due to counterion correlations. If discrete surface charges are considered
the attractive force is weakened and can even be turned into a repulsive force. This is due to
the counterions being strongly correlated to the discrete surface charges forming effective,
oppositely directed, dipoles on the two walls. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1856925g

I. INTRODUCTION

The theoretical cornerstone of colloidal stability is the
Derjaguin–Landau–Verwey–OverbeeksDLVOd theory,1,2 in
which attractive van der Waals forces are balanced by repul-
sive electrostatic interactions. In the DLVO theory, electro-
statics are treated with the Poisson–BoltzmannsPBd mean
field approximation. Although successful for a vast range of
charged systems, it has been shown that the PB approxima-
tion is qualitatively incorrect when the electrostatic interac-
tions are strong,3,4 such as when multivalent counterions are
present or when the dielectric constant of the solvent is
small. Furthermore, the DLVO theory does not handle spe-
cific ion effects which can be important at high salt
concentrations,5 hydration forces which arise due to the spe-
cific structure of water,6 or the discreteness of surface
charges.7–12

In this paper we will describe the effect of discrete sur-
face charges, either fixed in a lattice or mobile on the wall.
Using Monte CarlosMCd simulations the effective force be-
tween colloidal particles are calculated while varying a num-
ber of parameters, including the electrostatic coupling
strength, the degree of charge discretization and the effect of
multivalent ions. It turns out that for some sets of parameters
the simulation results are qualitatively different from the
mean field predictions.

A suitable model system which has drawn much interest
is that of two parallel charged plates with only counterions,
treated in the primitive model. The sole property of the sol-
ute is to screen electrostatic interactions by the dielectric
constante and the only interaction between charged particles

is of Coulomb type. The parallel plate geometry can be seen
as a simple model for understanding colloidal stability but it
also has a more direct experimental equivalent in lipid
bilayers.13,14 For the model system, the PB theory predicts
that the electrostatic interaction between the plates is always
repulsive. Monte Carlo simulations3 and theories based on
integral equations4 have shown that when the counterions are
divalent it is possible to observe an effective attraction be-
tween the plates. This attraction is attributed to counterion
correlations which are not accounted for in the PB theory.

In both mean field theories and the early numerical
work3,4 the parallel surfaces or walls are assumed to have a
smeared out uniform charge, quantified by a surface charge
densitys. The validity of this approximation has been ques-
tioned when considering nanoscale systems where the mac-
romolecules are of a size comparable to the average distance
between them.15 Even for the model case of infinite charged
walls, simulations have shown how the discrete nature of the
surface charge density will change the counterion distribu-
tion. Discrete surface charge will enhance the attraction of
the counterions towards the wall and deplete the counterion
distribution at the midplane between the walls.7–9

The effect of charge discretization on the effective inter-
action between the two walls have recently been approached
theoretically. The result of charge discretization in mean field
theories can be either to make the charged walls less
repulsive12,10or more repulsive11 depending on if all counter-
ions reside between the walls or not. In this paper we will
adopt the first approach and use Monte Carlo simulation to
calculate exactlyswithin statistical limitsd the effective inter-
action between two walls with discrete wall charges. The
above mean field calculations are all performed for condi-
tions at which the two plates repel each other. We will also
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investigate the effect of discrete charges when the electro-
static interactions are large, i.e., when a treatment including
electrostatic correlation predicts an attraction between two
walls with smeared out surface charge. Furthermore we will
describe the effect of letting the wall ions move in directions
lateral to the wall.

The remainder of this paper is organized as follows. Sec-
tion II describes the model and the Monte Carlo method used
to solve it. We will also introduce the different independent
parameters of the model. In Sec. III, we present results show-
ing where in this parameter space the effect of charge dis-
cretization is important. In Sec. IV, our results are summa-
rized.

II. THE MODEL AND NUMERICAL METHOD

A. The model for two charged walls with counterions

The model charge surfaces are parallel, infinite inx and
y directions, and located atz= ±h/2, see Fig. 1. The walls
have discrete negative charges located atz= ± sD+h/2d. The
neutralizing counterions are treated as point charges confined
in −h/2øzøh/2. The distanceD is the distance of closest
approach between the surface and counterions, and can be
thought of as the size of the ions. No added salt is considered
in this work. In the cases where the wall ions are positioned
in a fixed square grid, the distance between the surface
charges isa. The relation between the surface charge density
s and a is s=Qe/a2, whereQ is the valence of the wall
chargesswithout signd. The primitive model is used, where
the solvent only enters by screening Coulomb interactions
with the dielectric permittivityere0. e0 is the permittivity of
vacuum ander is the relative dielectric constant of the sol-
vent.

In this system there are four independent variables which
are the following.8

s1d The coupling strengthJ=q2lB/lGC=2pq3lB
2s, where

q is the counterion valence.lB=e2/ s4pere0kTd is the Bjerrum
length, the distance for which the interaction between two
monovalent charges equals the thermal energykT slB
=7.14 Å in waterd. The Gouy–Chapman length,lGC

=e/ s2pqlBsd, is the distance from the wall a counterion is

required to be moved in order for the bare Coulomb energy
to change by kT. The coupling strengths covered are
1øJø100 which ranges from low to very high coupling.

s2d The degree of charge discretizationa/D ssee Fig. 1d,
where the limit ofa/D=0 corresponds to smeared out sur-
face charges. We report results for 2øa/Dø8. The low
limit results are equivalent to results for smeared out surface
charges while the high limit is well above the threshold for
which discretization effects are observed.

s3d q/Q, i.e., counterion valence divided by wall ion
valence. Here we will look at effects of monovalent and
divalent species, 1/2øq/Qø2.

s4d h, the distance between the walls, which will vary as
5øhø40 Å.

For fixed wall charges the opposite walls can be in phase
or out of phase, which will affect the effective interaction
between the plates. Instead of considering the out of phase
system we will consider a model in which the surface
charges can move within thex and y dimensions that make
up the infinite walls.

B. The Monte Carlo method

In order to simulate two parallel infinite charged walls
with counterions in between, certain approximations regard-
ing the boundary conditions in thexy plane have to be con-
sidered. Here we use a modified version of the approach of
Valleau, Ivkov, and Torrie.16 In our study, the wall charges
and counterions inside the central Monte Carlo cell are
treated as discrete charges while all electrostatic interactions
outside the central cell are treated in a mean field approxi-
mation adding a tail correction to the interactions inside the
central Monte Carlo cell.

The Hamiltonian of the system is

U = o
i

Ntot−1

o
j=i+1

Ntot

usii dsr ijd + o
i

Ntot

usixdsrWid, s1d

where Ntot is the total number of charged particles in the
minimum image cell.usii dsr ijd is the pair interaction between
two charges in the central cell andusixdsrWid is the tail correc-
tion for a charge in the central cell.

The direct interaction between two charged particlesi
and j , in the central Monte Carlo cell, is given by Coulombs
law,

usii dsr ijd =
zizje

2

4pere0r ij
, s2d

wherezi andzj are the valences of the two particles andr ij is
the distance between the particles.

The tail correction for an ioni can be found from

usixd = usiwd − usiMI d + usi`d − usi f d, s3d

whereusiwd is the interaction between an ion and an infinite
wall with smeared out charges andusiMI d is the interaction
between an ion and a wall in the minimum image cell with
smeared out charge.usi`d−usi f d accounts for the interaction
between an ion and the mean field solution outside the cen-
tral cell. Hereusi`d is the interaction between an ion and the
mean field over the entire slitsinfinite in x andyd andusi f d is

FIG. 1. In the model used, negative wall charges are located a distanceD
behind the walls. In thexy plane, the wall charges are distributed on a square
lattice with lattice constanta. The walls are infinite in thexy plane and
separated a distanceh in the z direction.
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the interaction between an ion and the mean field in the
minimum image cell. These subtractions are needed so as not
to double count the counterion-counterion interactions in the
central cell already accounted for when summing Eq.s2d
over all particles in the central cell.

In practice, the mean field is only used as an initial ap-
proximation, since during the simulation the actual distribu-
tion in the central cell is used to update the tail correction in
a self-consistent way.16 Note that the first termusiwd is a
constant, independent of the position of the ion. Thususiwd

does not have to be calculated when generating new configu-
rations in the simulation.

When comparing with the expression for walls with
smeared out charges,16

usixd = usiwd + usi`d − usi f d, s4d

the only difference is the termusiMI d which we subtract not to
double count the interaction with the part of the wall located
within the minimum image cell. The expression forusiMI d is
derived in the same manner as the other terms in Eq.s3d.17

At the start of the Monte Carlo simulation the counteri-
ons are distributed randomly in the central cell. A trial con-
figuration is generated by translating a single counterion a
random distance between 0 anddtr. The energy of the trial
configuration is calculated according to Eq.s1d and rejected
or accepted according to the standard Metropolis Monte
Carlo scheme.18–20

After an equilibration of 106–107 attempted moves, av-
erages are gathered for a simulation length of 107–33108

attempted moves. Depending on the parameters of the simu-
lation, dtr is between 2 and 15 Å. For the results reported
here, simulations consisting of 144 ions per wall are used.
This leads to the number of counterions varying from 144 to
576 depending onq/Q. When increasing the size of the sys-
tem no noticeable changes where observed, indicating that
no size effects are present. Also, in order to verify our pro-
gram we have favorably compared our counterion profiles
for the case of low coupling and low degree of charge dis-
cretization with the counterion profiles from simulations in
which the walls have smeared out wall charges.

C. Calculating the pressure

The main output from the simulations is the wall-wall
interaction. Throughout this work we will be reporting on the
pressure lateral to the walls. The pressuresor force per area
unitd between the two walls can be calculated at any plane
parallel to the walls. It is well known that the midplane is
preferred for reasons of numerical stability.3 At the midplane
the pressure can be calculated as21

P = kTr + Pes, s5d

where the firstsentropicd term comes from the concentration
r of counterions at the midplane and the second termPes is
the electrostatic force per unit area acting across the mid-
plane. For the case with a smeared out surface charge Valleau
et al.16 showed how the electrostatic pressure can be calcu-
lated asPsii d−Psi f d where the same notation is used as in
Eq. s3d. Just as for the Hamiltonian the pressure is modified

since we need to subtract the interaction with a surface with
smeared out charges in the central box,

Pes= Psii d − Psi f d − PsiMI d. s6d

In Eq. s6d, Psii d is a double sum over all particles while the
two last terms are single sums over all particlesfcompare
with Eq. s1dg.

It is interesting to study the separate components of the
pressure as divided in Eq.s5d. At the midplane the entropic
part of the pressure is proportional to the ion concentration
and always positivesrepulsived. Mean field theories will only
have this term always resulting in positive pressures.

For smeared out wall charges the electrostatic contribu-
tion Psii d−Psi f d is related to the deviation of the ionic distri-
bution from its mean. Since a counterion in one-half of the
slit will repel counterions in the other half,Psii d, Psi f d and
the electrostatic pressure will always be negativesattractived.

When considering discrete wall charges, two different
parts are added to the pressure. First,Psii d is now extended
over the wall ions in the minimum image box and second,
PsiMI d, the interaction between counterions and the minimum
image part of a wall with smeared out charges has to be
subtractedfsee Eq.s6dg. The resulting electrostatic pressure
for discrete wall charges can be either repulsive or attractive
depending on the electrostatic interactions.

In order to ensure convergence and good statistics we
calculate the autocorrelation ofP and adjust the length of the
simulation so that at least a hundred independent observa-
tions of P are calculated. In most cases this number will be
much higher.

III. RESULTS AND DISCUSSION

We first consider the case where surface charges and
counterions are monovalentq=Q=1. In Fig. 2 the pressure is
shown as a function of the wall-wall separation for different
coupling strengthsJ and degrees of surface charge discreti-
zationa/D. At low coupling,J=1, the discrete nature of the
wall charges do not have any influence on the pressure. In-
creasingJ from 1 to 10 results in a decrease in pressure by

FIG. 2. The pressure as a function of the distanceh between two charged
walls sQ=1d with monovalent counterionssq=1d. The lines are the results
from MC simulations with a low degree of charge discretizationsa/D=2d
while the symbols are results from corresponding simulations with a high
degree of charge discretizationsa/D=4d. The different coupling strengths
areJ=1 sdashed line and diamondsd, J=10 sdotted line and squaresd and
J=100ssolid line and circlesd. The standard deviations are smaller than the
symbol sizes.
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a factor of 5 ath=21 Å. This is in contrast to the prediction
of mean field theory and demonstrates that counterion corre-
lation is important in this regime.3,22 On the scale of the
figure, the discrete nature of the wall charges do not alter the
pressure forJ=10 either.

For smeared out surface charges and at high coupling,
we expect counterion correlation effects to be large and that
the total pressure should be attractive.3,22 For J=100 this
type of behavior can be observed fora/D=2, but when
a/D=4, discrete surface charges lead to the total pressure
being repulsive at small separation.

In Fig. 3 the electrostatic correlation and entropic com-
ponents are shown together with the total pressure. For the

case of the coupling strengthJ=1 fFig. 3sadg the total pres-
sure is due almost entirely to entropic effects and the elec-
trostatic correlation component is not important. The two
components, as well as the total pressure, are independent of
the degree of charge discretization.

At a coupling strength ofJ=10 fFig. 3sbdg, the pressure
is independent ofa/D for largeh, while for smallh the total
pressure is decreased slightly when increasinga/D, see the
inset of Fig. 3sbd. However, the relatively small change in
total pressure witha/D is in fact made up of much larger
relative charges in the entropic and electrostatic correlation
components that happen to nearly cancel each other, see fur-
ther Table I.

For J=100 fFig. 3scdg the two total pressure curves for
a/D=4 anda/D=2 follow the electrostatic correlation con-
tribution. For smallh the electrostatic contribution to the
pressure is attractive for a low degree of charge discretiza-
tion and repulsive for a high degree of charge discretization,
and consequently so are the total pressures. For largeh the
correlation induced attraction is reduced when increasing the
degree of charge discretization, see the inset of Fig. 3scd. At
h=21 Å there is a 25% reduction in totalsattractived pressure
when going froma/D=2 to a/D=4.

Figure 4 gives an overview of the effect of discrete mo-
bile and fixed surface charges at different coupling constants
J sa=8.4 Å andh=10 Åd. For low electrostatic coupling,
see inset of Fig. 4sad, the repulsive pressure is decreased with
increasing degree of charge discretization. When going from
a/D=2 to a/D=8 the pressure is decreased by around 15%
for Jø10. This confirms theoretical predictions by
Lukatsky and Safran12 for small J.

At J<20 the pressure is equal for the two cases of
different degree of charge discretization. Just aboveJ=20
the walls with a high degree of charge discretization have a
larger repulsion than the walls with a low degree of charge
discretization. For largeJ, discrete surface charges results in
a smaller wall-wall attraction than for walls with smeared out
surface charges. The deviations for walls with discrete sur-
face charges, compared to walls with smeared out wall
charges, will increase when the relationa/h increasesfsee
Fig. 3scdg. Note thata appears in both the degree of charge
discretizationa/D and electrostatic couplingJ.

Figure 4sbd nicely illustrates that for the case with a low

FIG. 3. The electrostatic correlation and entropic components of the total
pressure for different coupling strengthssad J=1, sbd J=10, andscd J
=100. Results corresponding to a high degree of charge discretization
sa/D=4d are shown in symbols and those that correspond to a low degree of
charge discretizationsa/D=2d are shown in lines. The electrostatic correla-
tion components are given in squares and dashed lines, the entropic compo-
nents are given in diamonds and dotted lines and the total pressures are
given in circles and solid lines. The standard deviations are smaller than the
symbol sizesseven for the insetsd.

TABLE I. The entropic componentPent, electrostatic componentPes, and
the total pressureP for h=10 Å, q=1, andQ=1 at different degrees of
charge discretizationa/D and electrostatic couplingJ. Also shown is the
standard deviations for the total pressure and the change in pressure when
going from a low degree of charge discretization to a high degree of charge
discretization,D% =100%s1−fPsa/D=4dg / fPsa/D=2dgd.

a/D J

Pent

smMd
Pes

smMd
P

smMd
s

smMd

2 10 1143 −673 470 3
4 10 790 −381 409 2

D% 10 31% 57% 13% ¯

2 100 19 −360 −341 1
4 100 0 −52 −52 0.4

D% 100 100% 86% 85% ¯
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degree of charge discretizationsor smeared out wall
chargesd, the decrease of the entropic repulsion is larger than
the decrease of the electrostatic attraction whenJ increases.
The net attraction at highJ stems from the electrostatic
counterion correlation attraction being changed less than the
entropic repulsion.3 Put another way, even if the electrostatic
correlation attraction becomes smaller with increasingJ, it
becomes relatively more important since the entropic repul-
sion decreases faster.

At small J s,20d, the total pressure decreases only
slightly with an increasing degree of charge discretization.
This is deceptive, since in fact the entropic and correlation
terms both change by a large percentage, but the sum re-
mains almost unchanged. The same mechanism as that de-
scribed above regarding counterion correlation for walls with
smeared out wall charges can explain the decrease in pres-
sure. Figure 5sad shows that with increasing degree of charge
discretization, counterions are more attracted towards the
walls.7,8 Obviously, with fewer counterions at the midplane
the entropic contribution will be smaller. Even though the
electrostatic contribution also decreases, it does not offset the
decrease in the entropic contribution.

For largeJ the entropic term approaches zero indepen-
dent of the degree of charge discretization. For a small de-
gree of charge discretizationsor walls with smeared out sur-

face chargesd, counterion correlation effects will be
important resulting in wall-wall attraction. For a large degree
of charge discretization, electrostatic counterion correlation
is much smallersdue to counterion-wall ion correlation, see
belowd resulting in a small attractive, or even repulsive, elec-
trostatic pressurefsee Fig. 3scdg.

The source of the qualitative difference of the electro-
static pressure component found fora/D=4 anda/D=2 in
Fig. 3scd can be found in the distribution of the counterions
in the xy planefFig. 5sbdg. In the limit of low J and small
degree of charge discretization the distribution in thexy
plane is almost uniform, approaching the case of smeared out
surface charges. Fora/D=4 the counterions show a pro-
nounced correlation around the discrete wall ions for high
electrostatic couplingsJ=10 andJ=100d. In the limit of
very high J, every counterion will effectively be localized
around a wall ion, and the systems can be thought of as two
walls with oppositely directed dipoles, which will have a
repulsive interaction.

Note that for low degree of charge discretization, even

FIG. 4. The pressure between two charged walls as a function of the elec-
trostatic couplingJ for q=1, Q=1, h=10 Å, anda=8.4 Å. sad The lines are
the results from MC simulations where the discrete wall charges are allowed
to move while the symbols are results from the corresponding simulations
with fixed discrete wall charges. The degrees of charge discretization are
a/D=2 sdashed line and squaresd anda/D=8 ssolid line and circlesd. The
inset shows corresponding results for smallh. sbd The components of the
pressure for the two cases with moving wall ions,a/D=2 slines without
symbolsd anda/D=8 slines with symbolsd. The solid lines shows the total
pressure, the dotted lines the electrostatic correlation pressure, and the
dashed lines the entropic pressure. The standard deviations are smaller than
the symbol sizes.

FIG. 5. Distribution functions for the counterions.sad The distribution of
counterions in thez direction, perpendicular to the walls, fora/D=2 ssolid
lined, a/D=4 sdotted lined, anda/D=8 sdashed lined. J=10 andh=12 Å.
The left inset provides details close to a wall and the right inset provides
details around the midplane.sbd The distribution of counterions in thexy
plane, parallel to the walls, forJ=1 ssolid lined, J=10 sdashed lined, and
J=100 sdotted lined. a/D=4 andh=10 Å. Also shown is the distribution
for J=100, a/D=2, andh=10 Å scirclesd. Only part of the wall in the
minimal image box is shown.
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the high coupling casesJ=100d does not give rise to strong
deviation from the uniform distribution expected for smeared
out wall charges which is why the counterions can still cor-
relate to each other.

The effect of letting the wall ions move in a plane par-
allel to the walls, at a fixed distanceD behind the wall, is
shown in Fig. 4. The lattice constanta has no meaning but
the quantitya/D will still be used as a measure of the degree
of charge discretizationsa can be thought of as constant
describing the two-dimensional wall charge densityd. Figure
4 shows how letting the wall ions move, slightly increases
the effect of discrete charges for smallJ, while for largeJ

moving wall ions counteracts the effect of the discrete wall
charges.

For smallJ and a large degree of charge discretization
the moving wall ions increase the attraction of the counter-
ions towards the walls, in comparison to the case with fixed
ions. According to the same reasoning as above this leads to
both smaller repulsive entropic pressure and smaller attrac-
tive electrostatic correlation pressure, and since the entropic
part changes more, the net result is a smaller repulsion.
WhenJ is large it makes no difference if the wall ions are
allowed to move, for large degree of charge discretization,
since dipoles are formed in any case. For low degree of
charge discretization, the moving wall ions again increase
the attraction of the counterions towards the walls. Since the
entropic pressure is negligible for largeJ, the decrease of
electrostatic attraction leads to a decrease in total attraction.

The last variable left to investigate is the valence of the
ions. It is only for highJ that q/Q matters. Fora/D=2,
dashed lines in Fig. 6, the valence does not influence the
result and all the lines are similar. Fora/D=8, we have
already seen that forq=1:Q=1 the pressure becomes repul-
sive due to the formation of dipoles. The same behaviour
should be true forq=2:Q=2, which Fig. 6 confirms. This is
also evident forq=1:Q=2, where two monovalent counter-
ions form an effective dipole with one divalent wall ion. For
q=2:Q=1, the divalent counterions cannot form dipoles
with the surface charges since the surface charges are fixed

and thus the two walls attract each other for highJ and
small h, just as walls with small degree of charge discretisa-
tion do.

IV. CONCLUSIONS

In this study we have shown that the effect of discrete
wall charges can be important if the wall charges are located
only a small distance into the wall and if the wall charges are
far from each other. These effects are summarized in Fig. 7.
Discrete wall charges modify the distribution of the counter-
ions by attracting counterions towards the charged walls. For
low J, when entropy is dominating the system, increasing
the degree of charge discretization mainly leads to a decrease
in the repulsive entropic pressure component. This results in
the total repulsive pressure decreasing. For largeJ, when the
electrostatic energy is large, the entropic component of the
pressure disappears independent of the degree of charge dis-
cretization. For a small degree of charge discretization this
leads to an attractiveselectrostatic and totald pressure due to
counterion correlation. For largeh the effect of a large de-
gree of charge discretization is to decrease this attractive
pressure. For small wall-wall separations the attraction is
turned into repulsion for a large degree of charge discretiza-
tion since the counterions and wall charges form effective
dipoles. This is true as long as the wall ion valence is a
multiple of the counterion valence. Specifically the forma-
tion of dipoles is not possible forq=2:Q=1.

As pointed out by Moreiera and Netz,8 experimentally
relevant systems can be affected by the inhomogeneous char-
acter of the surfaces. A system withs=1/71 Å andonly
monovalent charges will have a lattice constant,a=8.4 Å,
andJ=4.5 for a water solutionse=78d at room temperature.
The repulsive pressure for such a system would be decreased
due to discrete surface charges ifh is smaller than 10–15 Å
and D is around 2 Å.

In our simulations, a change from attraction to repulsion
is found for J.20 and a/D.4. For a system withs
=1/128 Å−2 and divalent counterions as well as surface
charges, the lattice constant isa=16 Å, and J=20 for a
water solution at room temperature. For a minimal distance
between wall ions and counterions ofD<4 Å the ratio

FIG. 6. The pressure between two charged walls as a function of the wall-
wall distance for different values ofq/Q. The dashed lines are the results
from MC simulations wherea/D=2 while the solid lines with symbols are
results from the corresponding simulations witha/D=8. The following val-
ues have been used,q=1:Q=1 scirclesd, 2:1 ssquaresd, 1:2 sdiamondsd, and
2:2 strianglesd. The dashed lines are not individually labeled since they are
similar. The simulations are performed forJ=100.

FIG. 7. A schematic overview of the effect of going from a low degree of
charge discretizationsor smeared out wall chargesd to a high degree of
charge discretization.
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a/D=4 is obtained, which is at the start of the range for
which discrete surface charges will lead to qualitative devia-
tions from the case with smeared out surface charges.
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